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Negative capacitance �NC�, predicted by various electrical double layer �EDL� theories, is critically re-
viewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly
prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for
the artificial conditions of � control, where an EDL is described by the equilibrium electric response of
electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, �. The contradiction
is only apparent; in fact local � cannot be set independently, but is established by the equilibrium response to
physically controllable variables, i.e., applied voltage � �� control� or total surface charge q �q control�. NC
predictions in studies based on � control signify potential instabilities and phase transitions for physically
realizable conditions. Building on our previous study of � control �M. B. Partenskii and P. C. Jordan, Phys.
Rev. E 77, 061117 �2008��, here we analyze critical behavior under q control, clarifying the basic picture using
an exactly solvable “squishy capacitor” toy model. We find that � can change discontinuously in the presence
of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL’s
critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for
theoretical studies not limited by � control.
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I. INTRODUCTION

Electrical double layers �EDLs� play critical roles in elec-
trochemistry, biology, colloid science, and plasma physics.
Their major thermodynamic characteristic is the specific dif-
ferential capacitance, C= 1

A��q, which describes the relation
between the total charge, q and the potential drop, � �with A
the surface area�. As a typical linear-response function, it is
intimately related to critical behavior in EDLs, the focus of
our current investigation. This aspect of C is profitably illu-
minated by the interpretation of theoretical treatments mani-
festing domains of negative capacitance �NC�. The differen-
tial capacitance can be viewed from two perspectives
amenable to investigator manipulation: “potential control”
�� control� and “charge control” �q control� �1�. In the
former, the applied potential is varied and the response is the
charge acquired by the electrode; in the latter the interfacial
electrode charge is controlled while � adjusts in response.
Under either scenario, thermodynamic stability requires that
the EDL’s capacitance be rigorously positive. However,
many theoretical studies, and some simulations have ana-
lyzed electrical double layer behavior by imposing fixed and
usually uniform �planar, spherical, etc.� surface charge-
density distributions, �, which we term “� control.” Unlike
� or q control, this is a purely hypothetical construct, one not
realizable in the laboratory. Equilibrium analysis under these
artificial conditions �where both the net charge and its local
distribution are fixed�, can validly predict negative capaci-
tance, both for individual EDLs and for the electrochemical
cell. Such a prediction does not disqualify the theoretical
treatment, but rather is indicative of possible instabilities and
phase transitions under the physically accessible q or �
control.

Recently we considered how �-control peculiarities can
inform our understanding of �-controlled systems �1�. Under
these constraints, we showed that �-control manifestations of
NC were the signature of a charging instability and/or a
phase transition. Here we extend this investigation to analyze
critical behavior under q control, addressing this and related
questions from the perspective of exactly solvable toy mod-
els. To clarify the nature of � control, as well as its physical
distinction from � and q control, in Sec. II we discuss the
relationship of � control to NC. In Sec. III we briefly review
our recent study �1�, describing the consequences of
�-controlled capacitance anomalies for �-controlled sys-
tems. In Sec. IV we build on this study and illustrate the
possible implications of �-controlled NC for q-controlled
systems. We extend the “elastic capacitor” �EC� toy model
used to study �-controlled systems and introduce a “squishy
capacitor” �SC� representation, an extension of the EC that
permits lateral instabilities. Section V focuses on NC-related
instabilities, both for single interfaces and two-electrode
cells. Section VI discusses the theoretical implications of NC
and outlines open issues in simulations of NC-related critical
behavior of electrified interfaces. Section VII provides a
brief summary. The Appendix outlines physically important
considerations for ensemble simulations under �, q, and �
control.

II. �-CONTROL AND NEGATIVE CAPACITANCE
IN THEORETICAL STUDIES OF EDLs

The theory of ionic distributions near uniformly charged
walls was initiated by Gouy �2� and Chapman �3� �GC�; the
corresponding approach based on local statistical models �1�
is often termed Poisson-Boltzmann �PB� theory �4,5�. The
inverse capacitance of the “diffuse” �d� ionic layer is defined
as Cd

−1=���d where �d is the potential drop across the dif-
fuse layer. In PB treatments, Cd is always positive. However,
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both extended PB analysis including ionic correlations �6–8�
and Monte Carlo �MC� simulations of EDLs �9� led to the
“unexpected and interesting result” �10� that under certain
conditions �d decreases as the electrode � increases. This
result, equivalent to Cd�0, has often been replicated �see
�11–25�, and references therein�. While unusual, it was im-
mediately seen to violate no physical principle �10� as long
as the EDL’s total capacitance is positive �26�.

In the traditional �but restricted� treatment of the EDL, the
diffuse layer is in series with a Helmholtz �H� �or compact�
layer �27,28�

C−1 = CH
−1 + Cd

−1, �1�

where CH is often viewed as constant gap capacitor, with the
gap, lH, identified with zH, the distance of closest approach of
counterions to a metal electrode surface �29�. For ions of
identical radius RI this yields the classical Stern model �30�
CH

−1=RI /�H�0 where �H is the compact layer’s dielectric con-
stant. Thus defined, CH is strictly positive. As long as

CH
−1 � − Cd

−1, �2�

the Helmholtz layer “buffers” the EDL keeping C positive
despite the possible negativity of Cd. In terms of the Stern
model this is equivalent to the following restriction on the
diffuse layer contribution:

Cd
−1 � −

RI

�H�0
. �3�

If Eqs. �2� or �3� were always obeyed, observing Cd
−1�0

would pose no physical problems. However, systems of low
ionic strength and high surface charge density, studied using
the hypernetted-chain approximation, failed to satisfy Eq. �3�
�10�, casting doubt on the adequacy of the underlying theory.
To resolve this issue, the possibility that NC was forbidden
was investigated for “primitive ionic models” �10� and a
hard-sphere mixture of ions and dipolar solvent molecules
�31� between two oppositely charged walls with controllable
charge density ��� �� control, also termed fixed charge-
density ensemble, FCDE, see Appendix, Sec. 1�. Instead of
the expected prohibition on NC, further studies �32,14,33�
inspired by these papers led to a trivial capacitance restric-
tion,

C���−1 �
L

��0
, �4�

with L the interplate separation and � the background dielec-
tric constant �34�. This condition simply indicates that elec-
trolytic shielding of the electric field reduces C−1 relative to
the geometric �no electrolyte� limit. It does not bound Cd

−1 as
suggested by Eqs. �2� and �3� and permits C−1�0 for both a
two-electrode cell �represented by two charged walls� and for
individual EDLs formed near each wall.

Both Monte Carlo simulations �13� and theoretical analy-
sis �15� corroborated the possibility of C�0 in FCDE treat-
ments of EDLs. Microscopic studies of the metal electrons’
contributions to the properties of EDLs �35–45� shed light on
the role of the Helmholtz layer in the origin of NC. Electron
density profiles near the electrode surface are strongly charg-

ing dependent, affecting both the “electronic plate” of the
interfacial capacitor and the equilibrium positions of the
electrolyte species in contact with the electrode �and thus
zH�. These effects, completely suppressed for hard-wall elec-
trode models �including the classical perfect conductor �PC�
model�, drastically alter compact layer properties, indicating
that CH can also be negative for contacts of metals with solid
electrolytes �39,42,46� and solvents �40–42,44,45,47–50�.

The relation of NC to charge-induced variation in the ef-
fective gap l��� of the interfacial capacitor �39� is best un-
derstood in terms of a “relaxing gap capacitor” �RGC�. Both
components of C in Eq. �1� are essentially RGCs, with
charging-dependent characteristic gaps �1�

lH��� = zH��� − ze��� , �5�

ld��� = zi��� − zH��� , �6�

and dielectric constants �H and �d �for simplicity, we ignore
possible electron spillover into the diffuse layer�. Here ze���
and zi��� are, respectively, the centroids of the electronic and
ionic distributions

zi,e = −
� �i,e��,z�zdz

�i,e
, �7�

�where �e=−�i=��; they are associated with the positions of
the electronic and ionic “plates” of the EDL �see �1,51,52�
for further details�. NC can only arise if, for some � domain
�for specificity, the “anodic range,” ��0�, the effective gap
l��� contracts with charging �electrostriction� and the con-
traction rate is sufficiently high �see �1� and references
therein�,

���l���� � l���/� . �8�

Rigorous analysis has shown that local statistical �PB type�
models, which predict ld contraction for some � domains,
universally fail to satisfy Eq. �8� �1� and consequently never
lead to Cd�0 �53�. We now review the “elastic capacitor”
�EC� toy model which unequivocally demonstrates that equi-
librium gap relaxation can indeed lead to negative C under �
control, and use it to illustrate NC’s implications for � con-
trol. The EC also introduces our subsequent analysis, Sec. IV,
of the squishy capacitor, designed to address the issue of NC
for q control.

III. ELASTIC CAPACITOR TOY MODEL OF THE EDL:
C ANOMALIES UNDER � CONTROL AND THEIR

MANIFESTATION UNDER � CONTROL

A characteristic toy model representation of a RGC is an
elastic capacitor �54,46,42�, one plate of which is electrically
grounded and the other plate attached to a spring �Fig. 1�
�55�. We consider its equilibrium charging behavior under �
control, which naturally leads to NC. Then, using the EC toy
model, we address another important puzzle, the apparent
contradiction between the permissibility of NC under � con-
trol, and its strict prohibition under � control, derivable both
thermodynamically �56� and from general statistical me-
chanical principles �57�.
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A. EC and capacitance anomalies

Electrostriction potentially leads to negative C in a RGC
if the rate of contraction with charging satisfies Eq. �8�. The
EC model provides a transparent example.

The specific �per unit area� electroelastic energy of the
isolated EC with fixed charge density �=q /A �� control� and
spring constant k �also per unit area� is

W��,l� =
�2l

2��0
+

k

2
�l − l0�2, �9�

where l0 is the gap for the neutral EC. Applying the equi-
librium conditions �lW ��=0 and �l

2W ���0 the equilibrium
gap is

l��� = l0�1 −
�2

3�cr
2 � , �10�

where �cr=	2l0k��0 /3. This solution is stable for all � as

�l
2W��,l��� = k � 0. �11�

The equilibrium potential drop between the plates is

u��� =
�d���

��0
=

�l0

��0
�1 −

�2

3�cr
2 � . �12�

Consequently, the inverse capacitance is

C−1 = ��u��� = C0
−1�1 −

�2

�cr
2 � , �13�

with C0=��0 / l0. C becomes negative for �����cr. The cor-
responding critical value of l is

l��cr� =
2

3
l0. �14�

Early work �39,46�, using these arguments, showed that NC
is allowed under � control, hence indicating that it is not a
model failing �see �42�, p. 108�.

B. EC under � control: sign of C and interfacial stability

The energy w̃�� ,�� of an EC under � control �the “grand
canonical potential” �56�� is

w̃��,�� = w��� − �� . �15�

Here w���=W�� , l���� �see Eqs. �9� and �10�� is the energy
of an isolated EC with charge density � �58�; the term −��
couples the plates to a potential source �56�. Equilibrium
conditions determine the electrode charge corresponding to
the applied �,

��w̃��,���� = ��w��� − � = 0, �16�

��
2w̃��,���� = ��

2w��� � 0. �17�

Equation �16� can be expressed as u���=�: the equilibrium
potential across an EDL, u���=��w��� equals the applied
voltage. The solutions of this equation, �=���� describe the
stationary charging points. When NC is present under � con-
trol, multiple stationary solutions can exist. Equation �17�
permits of solutions which are �at least locally� stable under
� control. It yields

��
2w��� = ��u�����=���� = C�

−1 � 0. �18�

The index � denotes computation under � control, where
the applied voltage � is controllably manipulated and the
corresponding equilibrium charge measured. Negative values
of C�, equivalent to ��

2w����0, would signify instability of
the EC with respect to charge transfer between the potential
source and the plates. Such � are not attainable in equilib-
rium fixed voltage ensembles �FVE, Appendix, Sec. 3�. The
instability cannot occur in the FCDE, where charge is artifi-
cially constrained and neither plate is connected to a source.
Thus, there is no contradiction between predicting C����0
under � control and the Landau-Lifshitz �LL� thermody-
namic stability condition C�0 �56�, derived under � con-
trol. Analysis of the EC �42,46,52,54� clearly demonstrates
NC related instabilities under � control �59�. This suggests
alternative interpretations of interfacial phenomena, focusing
on possible discontinuities and phase transitions �1�. We now
consider a related question: how are �-control anomalies
manifested under the physically achievable setting of q con-
trol? The basic EC cannot treat this because its plates are
laterally rigid. To circumvent this limitation, we introduce a
new squishy capacitor model.

IV. SQUISHY CAPACITOR AND MANIFESTATION
OF �-CONTROL ANOMALIES UNDER q CONTROL

A. Stability conditions

The squishy capacitor is a system of N elastic capacitors
connected in parallel �see Fig. 2�. Their common fixed plate
is electrically grounded, and the total charge on the electri-
cally coupled movable plates �total area A� is fixed at q. The
interplate distances li are always assumed small relative to
plate dimensions so that edge effects can be neglected. The
fixed plate represents the charged electrode while the relax-
ing plates mimic the electrolyte’s counter charge distribution,
thus accounting for two crucial features of an EDL’s re-
sponse to charging: relaxation of the equilibrium gap and the
possibility of lateral gap variation. While the EC model il-
lustrates charging instability �i.e., the discontinuity in q� un-

FIG. 1. Elastic capacitor: A is the area of its plate, k is the elastic
bond constant per unit area, and l is the interplate separation.
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der � control �Sec. III B�, the SC model releases the unifor-
mity restriction, permitting lateral instability under q-control.

Assume all capacitors have the same gap l0 when neutral
and the same specific �per unit area� spring constant k; the
specific energy of the isolated SC �q control� is then

W =
�̄2

2G
+

k

2

i=1

N

pi�li − l0�2, �19�

with �̄=q /A, the average charge density �equaling the actual
density if all capacitor gaps, li, are the same�, and pi=Ai /A.

G = 

i=1

N

Gi �20�

is the total specific geometric capacitance of the SC, with

Gi = ��0pi/li �21�

the specific geometric capacitance of the ith EC. Dividing
Eq. �19� by kl0

2 and converting to dimensionless units yields

w =
s2

2g
+

1

2

i=1

N

pi�1 − 	i�2, �22�

where w=W / �kl0
2� and 	i= li / l0 are the reduced energy and

gap, respectively.

s =
q

A
	 1

��0kd0
�23�

is the reduced average charge density and

g�
� = 

i=1

N
pi

	i
�24�

is the SC’s reduced specific geometric capacitance; 
 is a
configurational vector with components 	i. The stationary
condition for the ith EC,

�	i
w�s = 0, �25�

yields

s2

2	i
2g2�
�

+ 	i − 1 = 0, i = 1,2, . . . N . �26�

This, assuming 	i, 	k�1 �60�, yields the result

� 	k

	i
�2

=
1 − 	i

1 − 	k
�27�

one solution of which describes uniform compression

	i = 	k = 	 . �28�

Substituting Eq. �28� into Eqs. �26� and �24� and using the
condition


 pi = 1 �29�

we find the s dependence of the interplate separation in the
uniform state,

	�s� = 1 − s2/2, �30�

which is equivalent to the equilibrium solution for a single
EC, Eq. �10� �in reduced units�.

The dimensionless equilibrium potential �v=u�kl0
3 /

��0�−1/2� for the uniform EC �see Eq. �12�� is

v�s� = s	�s� = s − s3/2, �31�

and the corresponding reduced capacitance is defined by

c−1�s� = �sv�s� = �1 −
3

2
s2� �32�

The critical reduced charge density scr is determined by

c−1�s� = 0 �33�

yielding scr=	2 /3 and �compare with Eq. �14��

	cr = 	�scr� = 2/3. �34�

Under � control the differential capacitance, c, becomes
negative when �s��scr. We now consider the stability of this
uniform solution for different s in the physically admissible
range

0 � �s� � 	2. �35�

At �s�=	2 the gap closes and the EC electrically shorts;
larger �s� under � control is unattainable unless a chock is
added �see below�. Put differently, we assume the system is
uniformly charged to a particular s with the mobile plates
mechanically joined together, forming one rigid plate; then
the plates are mechanically disconnected and allowed to
equilibrate. As the solution, Eq. �30�, is stable for the rigid
plate EC for all s �see Eq. �11��, the only possible instability
is related to the inhomogeneous relaxation of 	i and corre-
sponding redistribution of charge. To analyze stability of the
SC, consider the Hessian N�N matrix H�N�,

Hij
�N� = �	i,	j

2 w�	i=	j=	���, �36�

where i , j� �1,N�. Using Eq. �22� we find

Hij
�N� = pi

2 − �3 − 2pi�s2

2 − s2 �ij + �1 − �ij�
2s2pipj

2 − s2 �37�

or

H�N� = P • T , �38�

FIG. 2. Squishy capacitor: N elastic capacitors in parallel. Ai and
li are the area and the interplate separation �gap� of the ith EC, k is
the elastic constant per unit area. The dashed line indicates the
position of a chock block, the lower boundary lcb of the interplate
separation. The line segments represent electric connections be-
tween the moveable plates.
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Pij =
pi

2 − s2�ij; Tij = ��2 − 3s2� + 2pis
2��ij + �1 − �ij�2s2pj .

�39�

We now show that the SC is unstable for

3s2  2. �40�

H is symmetric and thus its eigenvalues, �i, are real. Its
determinant is

det�H�N�� = �
i=1

N

�i = det�P�N��det�T�N�� , �41�

and

det�P� =
1

2 − s2�
i=1

N

pi � 0 for s2 � 2, �42�

the physically accessible range. The eigenvalues of T are

ti = 2 − 3s2, 1 � i � N; tN = 2 − s2. �43�

For s 	�2 /3� �Eq. �40�� det�T��0 for even N. Then with
Eqs. �41� and �42�, we find det�H�Neven���0; consequently it
has both positive and negative eigenvalues, a characteristic
of instability �saddle point� �61�. The uniform solution be-
comes unstable at sscr with respect to nonuniform varia-
tion in 	i and a corresponding redistribution of charge
�51,62,63�. From the above analysis, for odd N=Neven+1 the
principal minor �H�N,N=det�HNeven� is negative, also indica-
tive of instability �61�. Thus, the condition Eq. �40� implies
that the SC is unstable for all N. For illustration, we consider
two representative cases, one where N=2 and the other
where all N are identical.

B. Two coupled ECs

Consider two ECs �N=2� of different area, p1= p , p2
=1− p. Using Eq. �37� we find

H11 = p
2 − �3 − 2p�s2

2 − s2 , H22 = �1 − p�
2 − �1 + 2p�s2

2 − s2 ,

H12 = H21 =
2s2p�1 − p�

2 − s2 , �44�

det�H��z=z�s� = p�1 − p�
2 − 3s2

2 − s2 . �45�

The determinant is negative for s�scr, indicating �for N=2�
that in the critical range the uniform solution, Eq. �30�, cor-
responds to a saddle point. Once again, onset of instability
involves asymmetric variation in both 	1 and 	2, the details
depending on p. For identical ECs �p=1 /2�, loss of stability
starts with antisymmetric variation in 	1 and 	2. Consider
another limiting case, where one capacitor �e.g., EC1� is
much the smaller, p�1. Here

H11 � p
2 − 3s2

2 − s2 , H22 � 1, H12 = H21 �
2s2p

2 − s2 �46�

and H11�0 for sscr.. The small EC becomes unstable at
the critical charge, while the large one remains stable, a re-
sult easily explained. The large capacitor’s potential is prac-
tically unchanged if a tiny portion of its charge is transferred
to its small companion. Hence, EC2 plays a role of a poten-
tiostat, effectively putting EC1 under � control. Thus, upon
approaching the critical values of s and v, EC1 becomes un-
stable with respect to gap contraction and corresponding
charging of its plates from the “potentiostat” EC2, essentially
a special case of �-control instability.

C. N identical coupled ECs

Here pi= p=1 /N,

Hij = t��1 + r��ij + �1 − �ij�� , �47�

where

t =
2s2p2

2 − s2 , �48�

r =
2 − 3s2

2s2p
. �49�

One eigenvalue of Hessian �47� is �1=1 /N�0. The other
N−1 are �i=

2−3s2

N�2−s2� . Therefore, for sscr one eigenvalue is
positive and the other N−1 are negative, indicative of insta-
bility. The eigenvector �1= 1,1 , . . .1� corresponding to �1
describes uniform compression. The other �i�i�1� corre-
spond to antisymmetric variation in 	1 and 	i. Now consider
the stability of the uniform distribution relative to a harmonic
perturbation

	n = 	0 + � cos�qn�, q = 2�k/N ,

n = 1,2, . . . N; with k an integer. �50�

For small � the quadratic ���2� contribution to the energy
�Eq. �22�� is

w�2� � �22 − 3s2

2 − s2 . �51�

Thus, the energy change becomes negative at s�scr, which
may indicate transition to a nonuniform phase, although
other scenarios are possible �see discussion below�.

V. MANIFESTATIONS AND CONSEQUENCES
OF LATERAL INSTABILITY

A. Loss of stability under q control

So far we have considered linear instability. But what
happens after stability is lost? As just seen, near the critical
point scr, the interplate gaps of some ECs of the SC increase
while others contract. No restoring force prevents contracting
ECs from collapse and then short circuiting. A more interest-
ing case relative to EDL phase transitions is a possible sec-
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ond stable branch with finite, positive capacitance. This
is modeled by introducing a “chock block” �cb� bounding
interplate separation from below by 	cb = lcb / l0�	cr �see
Fig. 2�, thus physically preventing collapse �at collapse lcb
→0�. After stability is lost the contracting ECs abruptly tran-
sit to a “compressed” stable state with fixed interplate gaps,
	=	cb, a toy model analog of a surface phase transition �1�.
In the EDLs the stable branch at larger � can be produced,
e.g., by “steric” effects, first recognized by �7� with respect
to NC, preventing ions from accumulating near the electrode,
thus slowing down or reversing the EDL’s contraction rate
�63–66�, or by condensed molecular films forming on the
electrode surface �67–70�. The equilibrium positions of the
movable plates of the expanding ECs depend on s and 	cb.
With further charging �s�scr� they gradually shift toward the
chock. Typically, at some point scr� depending on pi and 	cb
they again become unstable and join the compressed state
with 	=	cb, forming a “uniform compressed phase.” The sec-
ond critical point satisfies the condition C�scr� �−1=0. Al-
though the mean charge density s=q /A is fixed, stability loss
is accompanied by discontinuous variation in the individual
charge densities on the ECs as well as trans-SC potential
v�s�. For specificity consider two identical ECs. The nonuni-
form state energy with the compressed gap fixed at 	cb and
the relaxing gap 	 follows from Eq. �22�. To within an insig-
nificant constant, it is

w�	,	cb,s� =
s2		cb

	 + 	cb
+

1

2
�1 − 	�2. �52�

The local minimum can be found from

�	w�s,	cb
= 0, �53�

�	
2w�s,	cb

� 0, �54�

where the critical �inflection� point scr� is defined by Eq. �53�
and �	

2w �s,	cb
=0.

This is illustrated in Figs. 3–6 where the transition
steps are arbitrarily placed at the points scr and scr� , corre-
sponding to loss of linear stability.

Due to fluctuations, the actual transitions occur at some-
what smaller s. Figure 5, which compares the energies of the
nonuniform and uniform phases, clearly demonstrates the ex-
istence of a “metastable” region �curve 1, fragment bc� be-
low scr� , where the local energy minimum describing the non-
uniform state is separated by a barrier from the uniform
state’s lower minimum.

B. Does a total cell capacitance �0 ensure cell stability?

In practice, voltage is applied between two electrodes, and
two double layers form, one per electrode. Consider electro-
lyte sandwiched between two electrodes, E1 and E2. If the
interelectrode separation, d, is sufficiently large �d��D
where �D is the electrolyte’s Debye length�, the whole cell’s
total inverse differential capacitance C−1 is

C−1 = C1
−1 + C2

−1, �55�

where Ci is the specific capacitance of the ith electrode
�i=1,2�. It is well known that �-control stability requires

C�0 �see �1� and Sec. III�. However, does this ensure cell
stability? Put differently, can a cell be stable if its total ca-
pacitance is positive while the contribution from one elec-
trode is negative?

Without loss of generality consider a simple and instruc-
tive example �Fig. 7�. EDL2 is represented by a classical
capacitor of constant gap a. Its positive capacitance C2�0 is
a buffer which guarantees that the total cell capacitance is
positive. EDL1, whose contribution can be negative under �
control, is modeled by the SC of the previous section. Would

FIG. 3. Equilibrium position of the moveable plate for the
squishy capacitor with N=2 and p=0.5, for three different positions
of the chock: 	cb=0.5 �curve 1�, 0.3 �curve 2�, and 0.1 �curve 3�.
The average charge density s is taken in the “subcritical range,”s
�scr�0.82. The vertical steps represent a discontinuous displace-
ment of the movable plate to the equilibrium position fixed by the
chock. Horizontal fragments correspond to the “compressed” uni-
form phase, with both movable plates resting on the chock.

FIG. 4. Charging curves v�s� for the SC with N=2 and p=0.5,
for three positions of the chock: 	cb=0.5 �curve 1�, 0.3 �curve 2�,
and 0.1 �curve 3�. Curve 0 corresponds to the uniform state, rigid-
plate elastic capacitor. The vertical line, s=scr, describes the transi-
tion from the uniform state �point a� to the nonuniform states
�points bi�. Points ci correspond to the critical charges scr,i� shown in
Fig. 3. The vertical steps describe discontinuities of v associated
with the transition to the uniform condensed phase and the corre-
sponding discontinuities of 	2�s� �Fig. 3�.
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it be possible to observe C1�0 if C�0? This question can-
not be addressed by simply noting that EDL capacitances
according to �56� must be positive. Indeed, the LL analysis
�56� implied that the EDL obeys � control, i.e., the whole
voltage drop is confined to the EDL while the contribution of
the second electrode can be neglected. In our case, however,
only the total potential �=u1���+u2��� between two elec-
trodes is fixed, while the individual components u1��� and
u2��� are variable. The generalization �1� proves that C of

the two-electrode cell is also positive, but it leaves open the
behavior of the individual components, C1 and C2. Simi-
larly, our demonstration that NC is forbidden for q control
�Sec. V A� is inapplicable here as the potential is now con-
trolled while electrode charge is variable. The total energy of
the “open” cell �in contact with the potentiostat� is

w̃ = w − s� +
�s2

2

with w defined by Eq. �22�; �=a / l0 �assuming uniform cell
dielectric permittivity� and �=��kl0

3 /��0�−1/2 is the reduced
external potential. From the equilibrium condition �sw̃ ��=0
we find

s =
�

g−1 + �
,

where g−1�1 �the upper bound, 1, corresponds to the neutral
SC�. Thus, for ��1 we find s�� /�, i.e., s is independent of
the state of EDL1. This effectively puts EDL1 under q con-
trol, and the results of Sec. V A are applicable. In this limit
the uniform state becomes unstable at ��scr� and negative
C1 is not observable. Formation of the nonuniform phase and
its further transition to the condensed uniform state corre-
spond directly with Figs. 3–6. The only difference is that the
discontinuously varying potential �Fig. 4� is now u1, with the
free variable either the total �controllable� potential � or
s=� /�. Results with arbitrary � are similar. The critical
charges scr and scr� �now produced by applying corresponding
reduced critical voltages �cr =v�scr� and �cr� =v�scr� � are unal-
tered from those under q control. However, transition in-
volves discontinuities in both v1 and v2 , and s. Figure 8
illustrates this for the case N=2 and p1= p2=0.5, considered
in Sec. V A.

FIG. 5. Energies of the SC �curve 1� for p=0.5 and 	cb=0.1, and
of the EC with the chock block �curve 2�. The region ac of the curve
1 corresponds to the nonuniform phase. The vertical discontinuity at
c describes the transition to the condensed uniform phase corre-
sponding to the verticals steps in Figs. 3 and 4 �curve 3�. The region
bc is a metastable nonuniform phase whose local minimum is
higher in energy than the global one corresponding to the con-
densed phase.

FIG. 6. Distribution of charge between two identical ECs com-
prising a SC. The parameters are the same as in Fig. 5. In the
vicinity of scr �point a� the uniform state loses stability and the SC
splits into two capacitors: one in the highly charged compressed
state restricted by the block �curve 2�: the other in the expanded
state �curve 1�. This nonuniform state loses stability near the point b
corresponding to scr� and the condensed uniform phase is formed.
Both transitions, a and b, are accompanied by discontinuities in the
individual charge densities s1 and s2.

FIG. 7. Model of an electrochemical cell under � control: The
SC in series with the classical constant gap capacitor. The reduced
potentials and interplate separations are defined in the text. The
shading intensity reflects the electric field strength and the surface
charge density. Despite nonuniformity in the charge and field dis-
tributions of the left-hand capacitor, the right-hand one is in a uni-
form state.
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Regardless of the details, we find that C�0 is no guaran-
tee of cell stability: if one EDL exhibits NC under � control,
its uniform state loses stability near the corresponding criti-
cal point vcr=v�scr� and undergoes a phase transition even if
the system’s total C under � control is positive. Cell stability
requires that

C1
−1�s� � 0, C2

−1�s� � 0 �56�

for all s corresponding to the voltage range considered. De-
spite superficial similarity, this differs from applying the sta-
bility condition �18� derived for a single interface to each
EDL independently. As mentioned above, � control of the
EDL is implicit in the LL derivation; here neither individual
contribution to � is controlled. Assuming fixed total �, each
may change discontinuously due to instability. Furthermore,
the LL derivation of the stability condition C�0 does not
address predictions of �-controlled NC. Our analysis indi-
cates that Ci�0 in Eq. �56� corresponds to stable phases
while Ci����0 �under � control� is indicative of transition
between stable states under physically realizable conditions.

C. Equivalent circuit for an EDL in the presence of lateral
nonuniformity: The origin of the critical point

As just seen electrochemical cell stability requires that
both EDL’s contributions be positive. This speaks to the
long-standing question of how predicted negativity of CD
or CH, the individual components of the EDL described by
Eq. �1�, can possibly affect the properties of the EDL if the
total C is positive �18,33,39,71�. Based on the similarity of
Eqs. �1� and �55� and the arguments presented in Sec. V B,
one might assume that a prediction of NC for one compo-
nent, say CD�0, leads to lateral instability of an EDL even
if “buffered” by the second component, say CH�0. How-
ever, there is an important difference. EDLs belonging to two
different electrodes are uncoupled with respect to lateral
fluctuations, so that EDL2 �with C2����0� is not directly
affected by charge nonuniformity and electric field distribu-

tions in EDL1 caused by its destabilization near the critical
point �72�. In contrast, the diffuse and Helmholtz compo-
nents of an EDL, Eq. �1�, are not separated by bulk electro-
lyte; lateral fluctuations in one immediately affect the struc-
ture of the other. Consider a particular case, where Cd

−1���
�0 exists under � control while C and CH are strictly posi-
tive. One can view this by sketching the Helmholtz layer as
a uniform dielectric slab of thickness a. In a virtual stand-
alone diffuse layer �e.g., primitive ionic model and in the
limit a→0� the instability at Cd

−1���→0 would lead to lat-
eral nonuniformity of �. However, with finite a the corre-
sponding nonuniform electric field �F�z ,�� immediately
penetrates the compact layer and increases its electrostatic
energy by

�WH � �
0

a

dz�
A

dA�F�z,x,y�2 � 0. �57�

This stabilizing contribution can shift or even prevent the
transition. Similarly, nonuniformity in the compact layer trig-
gered by its instability �if the CH�0 domain exists�, would
inevitably cause nonuniformity in the diffuse layer and a
corresponding stabilization of its thermodynamic potential
�assuming CD�0� �73�. As a result, the two-capacitor model,
Eq. �1�, is particularly inappropriate for discussing possible
instability due to lateral fluctuations �not to mention its gen-
eral restricted applicability �74��.

For illustration, consider a toy model EDL, a compact
layer with a fixed gap a, joined to a diffuse layer whose
relaxing “squishy plate” mimics the ionic countercharge dis-
tribution, and whose neutral state gap is l0. In the “normal”
laterally uniform state this is seen either as a serial connec-
tion described by Eq. �1�, or as a SC with the dimensionless
gap �+	�s� ��=a / l0�. For simplicity, both layers are as-
signed the same dielectric constant. Generalization to �H
��d requires a trivial substitution �→� /�H, 	→	 /�d and
has no effect on the conclusions.

Here, unlike with a cell of two EDLs, negativity of one of
the components �Cd in our example� is physically possible,
and does not preclude EDL stability. Suppose instead that in
this model the SC loses stability near the critical point scr

SC

=	2 /3 of the isolated SC, where Cd
−1→0. The corresponding

�virtual� lateral transition is not restricted to the SC alone,
but also causes nonuniformities in the surface charge and
electric field distributions in the adjoining compact layer
�Fig. 9�a��, clearly demonstrating the origin of the stabilizing
contribution �WH, Eq. �57�. Naturally, this stabilization, ab-
sent in the individual SC, must shift the critical point from
scr

SC. Importantly, testing the possibility of a lateral transition
immediately rejects the serial circuit representation, Eq. �1�.
The difference arises directly from the compact layer becom-
ing itself laterally nonuniform, which would be impermis-
sible in the serial model. Instead, the EDL is now described
as a parallel connection of locally uniform fragments, indi-
vidual ECs in series with the neighboring areas of the com-
pact layer �Fig. 9�b��, i.e., a modified SC whose energy

w =
s2

2g�
 + ��
+

1

2

i=1

N

pi�1 − 	i�2 �58�

is derived from Eq. �22� by substitution 
→
+� �equiva-
lent to 	i→	i+�� in g. Trivial analysis analogous to Eqs.

FIG. 8. Charge density s �curve 1, left-hand axis� and the po-
tential across the SC, �1 �curve 2, right-hand axis�, in the two-
electrode cell, Fig. 7. The thickness parameter, �=1.
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�25�–�43� indicates the EDL’s real critical point is

scr =	2�1 + ��
3

�59�

with c−1�scr�=0. This falsifies the hypothesis that s=scr
SC is

the EDL’s critical point. As just indicated, the consequence is
nontrivial. Using Eqs. �32� and �59� yields cd�s��0 for
	2 /3�s�	2�1+�� /3, a region where the EDL is linearly
stable. From the perspective of the uniform phase preceding
the transition �where Eq. �1� still holds�, the critical point can
be legitimately described as a tendency toward a mutual
compensation between the two sublayer contributions:

Cd
−1 → − CH

−1. �60�

While negative Cd or CH might appear nonphysical for q
control, only the EDL’s total capacitance has physical mean-
ing and only it is required to be positive. Ignoring this can
lead to serious confusion. For example, in a thermodynamic
analysis �70� focused on possible orientational phase transi-
tions in the compact layer, the sublayers were artificially
separated implying that, for each of them, NC must be pro-
hibited. This suggested that, at the critical point, both layers’
contributions must be infinite,

CH = � and Cd = � , �61�

a very exotic condition, which would be extremely hard to
achieve in practice. In addition, Eq. �61� is inconsistent with
the exact example of EDL instability just discussed: accord-
ing to Eq. �61�, with CH fixed the EDL should always be
stable. The condition Eq. �60� �which only requires C→�
and imposes no additional restrictions on the sign of compo-
nents� is much “softer,” since interfacial gap relaxation is a
typical property of both sublayers �see the discussion of Eqs.
�5�–�8��.

D. Relation between q- and �-controlled instabilities of the SC

The EC demonstrates that NC in a �-controlled equilib-
rium state implies physical instability upon switching to �
control. However, in an EC, charging associated with transi-
tion to a new equilibrium or a short-circuited state is inevi-
tably uniform. How can the lateral flexibility present in the
SC and in all realistic interfaces influence this transition?
From Eq. �15�, the reduced energy of the open system, a SC
in contact with a potentiostat, is

w̃ = w − s� �62�

with w defined by Eq. �22�. The charge density is no longer
fixed, but determined from the equilibrium conditions

�sw̃�� = 0 �63�

and

�s
2w̃�� = c−1 � 0 �64�

leading to

s = �g�
� . �65�

Solving the equilibrium equations

�	i
w̃�� = 0 �66�

jointly with Eq. �65� yields

2	i
2�1 − 	i� = �2. �67�

Remarkably, this equation describes the ith EC indepen-
dently, indicating that under �-control the individual compo-
nents of the SC are effectively uncoupled. Each EC is indi-
vidually charged by the potentiostat; the state of other ECs,
unlike the case of q control, does not affect this process.
After simultaneously losing stability at v�vcb all ECs con-
tract until halted by the chock block. The capacitance in the
new equilibrium state is

c−1 = 	cb � 0. �68�

Thus, under � control, the squishy capacitor experiences a
critical transition from one uniform phase to another, and the
nonuniform two-phase state is not directly observable. We
show later that this unusual property hints at ways to aug-
ment the model, which would make possible the study of
two-phase states under � control.

VI. DISCUSSION

A particularly thorny question in the theory of charged
interfaces has been the meaning of NC and how this physi-
cally unrealizable prediction can inform physical understand-
ing of interfacial phenomena �see �51,52,63� for reviews and
references�. Here, building on “toy model” insights, we dis-
cuss disputed issues and describe our approach to resolving
them. Finally, we outline some perspectives on future theo-
retical study of NC-related critical properties.

A. Physical meaning and consequences of NC

Both general thermodynamic �56� and statistical �57� ar-
guments show that the capacitance of an EDL �or of a two-

FIG. 9. Equivalent scheme of an EDL in presence of lateral
fluctuations. �a� Model with two contiguous sublayers: classical
compact layer capacitor with a fixed dimensionless gap, �=a / l0,
and an SC representing the diffuse layer. The differences in gray
shading indicate nonuniformity of the charge distribution and the
electric field strength in both sublayers. Unlike in Fig. 7, nonuni-
formity due to lateral transition in the SC penetrates the compact
layer.
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electrode cell� is positive under � control. In �10,31� where
the NC issue was first clearly articulated, it was also sug-
gested that NC was forbidden in theories of electrolytes in
contact with uniformly charged walls, where � rather than �
is fixed �Eq. �A1��. This seductive conjecture, first believed
exact and widely applied �18�, was later found unsupportable
�14,33,75�. Further work, based on MC simulation and ex-
actly solvable toy models, indicated that NC is allowed for
�-controlled equilibria. How is NC, strictly forbidden under
� control �and, as just demonstrated, also under q control�
permissible under � control? Some studies �14,76� argued
that the classical arguments were inadequate �56� and sug-
gested NC should be permitted under �-control �see
�1,33,51� for critical discussion�. The view we outlined pre-
viously �1,63� is simply summarized:

�1� While no strictures forbid NC under � control, the
latter hinges on two simultaneous constraints not generally
physically realizable: �a� fixed q, and �b� fixed, usually lat-
erally uniform, �.

�2� In � domains where C�0, relaxing � control inevita-
bly renders equilibrium states of NC unstable, with possible
transition to a new, stable, state. Restriction �a� fails under �
control �fixed potential�; q is unrestricted and adjusts to its
optimal value �77�. In addition, the charging instability, lead-
ing to an abrupt change in q, generally violates restriction
�b�. In isolated systems with total charge fixed, the unifor-
mity condition �b� fails due to spontaneous lateral redistribu-
tion of � accompanied by abrupt variation in �.

�3� In reality EDL capacitance, and that of the total cell
sandwiched between two electrodes, must be positive. Equi-
libria can only be studied without restrictions imposed by �
control.

�4� Despite these basic limitations, predictions of NC un-
der � control are physically significant. They hint at insta-
bilities and phase transitions under physically achievable
conditions of � control �a cell connected to a potential
source� or q control �an isolated cell with total electrode
charge fixed�. Hence, they provide a foundation for more
detailed studies of critical phenomena at charged interfaces.

This is clearly illustrated via toy models. Although not
complete descriptions of instability and phase transitions re-
lated to the prediction of C����0, they provide a “sanity
check,” guidance to the forbidden and the observable, both
theoretically and experimentally. They capture important fea-
tures of real EDLs and analyze them rigorously. The elastic
capacitor model accounts for an EDL’s gap relaxation due to
charging-induced variation in the electronic, ionic, and “po-
larization” charge distributions. Its study reveals the impor-
tance of clearly distinguishing between � and � types of
electric control �see �46� where the terms were introduced�. It
rigorously describes the consequences of an EDL’s “electros-
triction,” typical of electrified interfaces for some � ranges,
and unequivocally demonstrates that this can lead to C�0
for hypothetical equilibria restricted by � control. Thus lim-
ited, predicting NC is commonplace and not indicative of
any model failing �39,42,46�. These observations have been
affirmed repeatedly, as typical of studies of ionic systems
�13� and that NC prediction should be seen as a criterion
validating a theoretical model, not a symptom of its failing
�18�. However, that NC is allowable under � control in no

way implies it is physically observable. The EC model
clearly showed that NC does not survive the transition to �
control. The corresponding electroelastic instability �59� is
similar to one suggested as a mechanism for electroporation
and rupture in lipid bilayers �54,78,79�.

However, the EC model cannot describe instabilities of
isolated interfaces with fixed total charge. In Sec. IV we
introduced and studied the “squishy capacitor” model, allow-
ing lateral charge redistribution and demonstrated that NC is
also forbidden in an isolated, fixed q, system since transition
to a nonuniform two-phase state near �=�cr is possible �Sec.
V A�. Introducing a chock block mimics lattice saturation
and other effects, potentially yielding C����0 and conse-
quently a new stable branch at comparatively large �, fol-
lowing the negative C domain. The simple example �two
identical ECs in parallel� clearly exhibits lateral instability
with abrupt � transition to a nonuniform state, which evolves
to a new uniform state at larger �, and hints at the possibility
of hysteresis.

This approach clarifies the issue of model �in�validation
based on an NC prediction �10,13,14,18,31�. All treatments
based �explicitly or implicitly� on � control can result in NC;
such predictions do not invalidate the underlying theoretical
approach. How about � control, where NC is strictly prohib-
ited? Is a prediction of NC in the FVE model invalidating?
Our answer is again “no.” As demonstrated by the EC model
�also see Appendix, Sec. 3�, here NC may simply indicate
that the selected stationary state is unstable �also the case
under q control�. Consider one example, a Monte Carlo
simulation �13�, which showed, using a specially designed
primitive model, that NC is allowed under � control �80�. Its
charging diagram corresponds loosely to the segment o�e of
curve 2 �Fig. 10�. It was suggested �13� that this observation
of �-controlled NC supports the assertion that NC is permis-
sible for � control as well �14�. Clearly, this is not true. The
state described by the point � and belonging to the NC do-
main is only stable under � control, and becomes unstable
when the cell is connected to a battery at the same voltage
��, and the artificial restrictions of � control are released
�see Appendix, Sec. 3�. For the sake of generality we include
a stable branch e��f in the picture reflecting e.g., steric ef-
fects �63–66� �not included in �13��. Then, the EDL will
transit to the stable point �� at the same voltage, but with the

FIG. 10. Schematic representation of two typical charging
curves displaying NC. Curve 1 contains a maximum, the NC range
is segment bc and the second stable branch is cd. Curve 2 displays
negative integral capacitance �see �1� for detailed discussion and the
toy model displaying similar behavior�. The NC segment is oe. The
rest is explained in the text.
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charge incremented by �����. In fact, even at �=0 equilib-
rium corresponds to the polarized �charged� state f , not the
neutral state O with C�0. The alternative to this transition
�if there is no stable branch� would be electric breakdown of
the EDL leading to a Faradaic process. Put differently, pre-
diction of NC is never invalidating, but can prompt a search
for different stable equilibria, corresponding to the same � or
q. Although apparently paradoxical, we tend to agree with
�18� that the failure to observe NC is suggestive of model
limitations, while its prediction suggests a more sophisti-
cated and inclusive theory. For example, PB-type models ne-
glecting ionic correlations never produce NC, while im-
proved models, properly accounting for ion charge and size
correlations, typically lead to Cd�0 in highly coupled EDLs.
Similarly, on the metal side of the interface, CH was always
assumed positive until improved treatment of electronic con-
tributions demonstrated limits to this assertion �see Sec. I
and the following discussion�.

B. Perspectives for future study of NC-related features

Historically, the theory of charged interfaces developed
along two weakly integrated paths, focusing on two “sides”
of the interface:

�a� The “electrolyte side,” rooted in GC-type ionic models
and molecular models of the Helmholtz layer. More compre-
hensive description of ionic charge and size correlations,
more realistic description of the solvent, accounting for par-
ticle polarizability, improving interparticle interaction poten-
tials, etc. all served to advance this line of research. How-
ever, the description of the electrode was generally
oversimplified, usually by treating it as a hard charged wall
with, at best, its conductive nature described by the PC
model. Ionic models raised the issue of NC in EDL theory,
and provided bulk data related to the appearance of Cd�0
for a range of systems and models. Some, such as �13,15� led
to NC for the whole EDL. Recognition that early doubts
regarding the soundness of NC predictions were unwar-
ranted, inspired new theoretical efforts �18�.

�b� The “electrode side,” with more or less detailed and
consistent accounting of electronic effects including, e.g., in-
teraction of metal electrons with solvent molecules. Here,
electrolyte treatment was usually oversimplified, often by fo-
cusing on metal/solvent interaction and describing the dif-
fuse layer contribution by GC-type models. These studies
highlighted the role of metal electrons in the effective gap
relaxation in the compact layer, a feature ignored in group �a�
theories. Incorporating charging-induced variation in the
equilibrium solvent-electrode separation led to small and
negative CH

−1 for metal/solvent interface in the anodic range,
significantly improving agreement with experiment �50�.
Similarly, treating electronic relaxation at metal/solid elec-
trolyte interfaces, where solvent is absent, led naturally to
diverging and negative C in the cathodic range, consistent
with observation of sharply increasing � dependence of
C��� �50�.

In summary, NC in EDL theory: is not generally forbid-
den in FCDE; is a typical feature of various RGC models; is
commonplace for the individual components �CH�0,Cd

�0� and even for the full EDL in a range of models semi-
independently describing two “sides” of the interface. Thus,
we expect that more complete theories, consistently describ-
ing metal electrons and electrolyte, will quite routinely pre-
dict NC under � control and related peculiarities under q and
� controls.

For at least two reasons simulations have rarely focused
on NC-related critical properties: first because early studies
viewed NC predictions as fundamentally erroneous; second,
after the possibility of �-controlled NC was recognized, due
to the erroneous belief that it can be permissible under �
control �14�. Consequently simulation �13�, and subsequent
analytical study �15�, demonstrating NC in the FCDE, ig-
nored possible implications for �-control criticality. These
issues are still incompletely understood �see �1� for details�.
Thus, a recent call for “new computational efforts” moti-
vated by a review of the NC controversy �18� seems appro-
priate and timely.

The study of NC related criticality requires well-
constructed, simple models, which avoid complexities inher-
ent to unified treatments. To treat microscopic relaxation of
lH �81�, electronic contributions may be incorporated para-
metrically into CH��� �see �41,42,48,63,82,83��. An electro-
lyte model leading to Cd����0 can provide a further bias
favoring NC. Following Torrie’s insight �13�, ionic models
can be “tuned” to produce C�0 �80�, thus circumventing
complexity inherent, e.g., in incorporating ionic polarizabil-
ity �known to promote NC �15��, and still be suitable for
studying criticality.

With such a simplified model, critical behavior in isolated
�q control� or open �� control� systems can be efficiently
analyzed. In these simulations the lateral charge distribution
�in both cases�, and the net electrode charge �� control� must
be treated on an equal basis with ionic distributions. A novel,
relevant approach was recently developed for MC simulation
of FVE with two electrodes �84�. Both ionic parameters and
electrode charge density are free variables determined by
equilibration. Here, combining the primitive electrolyte
model with the hard charged wall model of the electrodes did
not lead to NC under � control; thus both canonical and
grand canonical descriptions of the charging curve ����
were equivalent. This approach is naturally applicable to
studies of criticality for models displaying NC under � con-
trol.

Consider Fig. 11, an “ionic analog” of Fig. 7. Here, ana-
lyzing lateral instability imposes technical requirements in
MC simulations. The MC moves must sample the “macro-
scopically” inhomogeneous distributions of both � and the
ionic variables. To correctly compute energies, equipotenti-
ality must be satisfied; the change in surface charge density,
���x ,y�, must exactly �or very closely� shield the field due
to perturbation of the ionic charge density, ���x ,y ,z�. This
requirement, possibly important even for the macroscopi-
cally uniform state simulated in �84� �where it was not im-
posed�, appears critical for simulating lateral nonuniformity.
Lateral periodicity of the simulation cell �see �84� and many
other studies� introduces further complication predetermin-
ing the cell dimensions that properly accommodates the
natural scale of lateral inhomogeneity is difficult. An alter-
nate approach would be to use a finite spherical cell. Prelimi-
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nary �-controlled simulations can guide studies of fixed
charge ensemble �FCE, Appendix, Sec. 2� and FVE critical-
ity. Consider a characteristic �-control charging diagram
with NC �Fig. 10, curve 1�. The maximum is a typical con-
sequence of interfacial gap relaxation, enhanced by ionic
correlations and electronic contributions. The segment bc is
the NC region; “steric” effects �63,64,66,85� can give rise to
the stable branch at large �. The point � is a locally stable
�metastable� state. However, transition to the globally stable
state �� with significant charge discontinuity ����� is ex-
pected under � control. Similarly, a transition with abrupt
potential change is expected under q control. Thus, the
FCDE charging diagram can guide sampling of the configu-
rational space in critical regions, where large fluctuations are
important.

Some useful analogies can be also derived from the recent
molecular-dynamics simulations of membrane electropora-
tion �86�, which demonstrated spontaneous stratification of
the ionic distributions around the membrane coupled with
the nonuniform membrane deformation, and consequent
breakdown, when the critical voltage due to the ionic imbal-
ance approaches the critical value Vcr �79�.

Further insight may be garnered by modifying the SC
model, so far used only for illustration. Our analysis of the
�-controlled transition, Sec. V D, shows that the inhomoge-
neous state does not arise for the model described in Sec. IV.
The moveable plates are mechanically uncoupled, Eq. �22�,
leading to a set of N independent equilibrium conditions, Eq.
�67�. Coupling would impose an additional energy penalty
for the phase “mismatch,” effectively a “linear tension,” the
two-dimensional analog of the surface energy contribution in
the theory of nucleation �87�. Incorporating this feature, im-
portant for analyzing surface phase transitions �67,69,88�,
would make the SC model more realistic. Using multiple
ECs instead just the two of the examples could yield further
insight. This introduces an “occupation parameter” �c
=Nc /N, accounting for the population of ECs in the com-
pressed �“c”� state. Preliminary analysis shows that charging
a SC of large enough N �with p=1 /N� in the subcritical
region s�scr leads to semicontinuous growth of �c from 0 to
1, smoothing the abrupt transition in scr� of the N=2 case.
This more closely corresponds to surface film condensation
via nucleation and growth of a two-dimensional phase.

This analysis has mainly described metal/electrolyte inter-
faces. However, � control is widely used, including multiple
applications to the stability of membranes and colloids. Ac-
counting for ionic correlations leads to some unusual prop-
erties, such as negative Cd , charge inversion and mutual
attraction of similarly charged macroions �see �89,90� for
review�. As the underlying phenomena are similar to those
leading to NC, scrutinizing � control �91� could be illumi-
nating.

VII. SUMMARY

Predictions of NC under � control, with its fixed charge-
density distribution, indicate instability and phase transitions
for physically attainable constraints, with either the total
charge, q, or the applied voltage, �, controlled. NC must be
a common feature in self-consistent treatments of metal elec-
trons, ions, and solvent molecules. It can be interpreted as a
consequence of charge-induced relaxation of the EDL’s ef-
fective gap, and illustrated by electromechanical toy models
emphasizing this feature. The elastic capacitor model showed
that C����0 is admissible for �-controlled equilibria, and
must be commonplace for model studies of electrified inter-
faces. It also displays catastrophic behavior under � control,
hinting at instabilities and phase transitions in EDLs, similar
to the electromechanical instabilities suggested as a mecha-
nism for membrane electroporation.

The squishy capacitor model, Sec. IV, accounting for lat-
eral charge redistribution in EDLs, demonstrates instability
of the uniform state in isolated systems where total charge, q,
rather than local charge density, �, is fixed. It also shows
that, for stability of an electrolyte sandwiched between two
electrodes, the capacitance of each EDL must be positive. In
other words, a positive total cell capacitance, while neces-
sary, is not sufficient for stability. Transition in the
�-controlled cell is accompanied by abrupt change not only
of q, but also of the individual potential contributions, �1
and �2, across the EDLs.

Despite apparent similarity, this analysis cannot be ex-
tended to the two-layer model of an EDL �compact and dif-
fuse layer in series�. Here, the layers are not spatially sepa-
rated and they interact strongly. Essentially, they comprise a
single EDL capacitor, for which only the total C must be
positive; the critical point corresponds to C→�. At the same
time, the capacitance of individual components can become
negative before stability is lost. The approach to the critical
point can be legitimately described as mutual compensation
between two contributions, Cd

−1→−CH
−1.

Simulating NC-related instabilities and phase transitions
in isolated and open systems requires consistent sampling of
the laterally nonuniform charge distributions on the electrode
and in the electrolyte, securing equipotentiality of the elec-
trode surface. The �-controlled charging curve ���� is an
important guide in such studies. Existence of a C�0 branch
at large �, beyond the C�0 domain �typically associated
with “lattice saturation” effects�, indicates a second stable
state crucial for the phase transition. An alternative would be
electric shorting �breakdown� of the EDL associated with
Faradaic processes. Extending the SC model can aid this
research.

FIG. 11. Schematic representation of the two-electrode cell at
the value of q such that C1�q /A��0 under � control. The electrons
and ions are distributed jointly to minimize the free energy and to
keep the electrode surface equipotential. Two phases, condensed
and expanded, correspond to two positions of SC’s movable plates
in Fig. 7.

MICHAEL B. PARTENSKII AND PETER C. JORDAN PHYSICAL REVIEW E 80, 011112 �2009�

011112-12



ACKNOWLEDGMENTS

Work was supported by a grant from the National Insti-
tutes of Health, Grant No. GM-28643. M.B.P. is grateful to
Dr. Sam Steingold for helpful discussion.

APPENDIX: THREE TYPES OF ELECTRIC CONTROL
AND NC-RELATED INSTABILITY

1. Fixed charge-density ensemble, � control

“� control” describes many theoretical studies of the EDL
with the charge density ��r� treated as an independently con-
trollable variable, usually implemented as a uniform ��
=const� distribution, planar, spherical or cylindrical. This
simple description can be modified to account for interfacial
polarizability, e.g., for metal/electrolyte contacts. Although
theories of EDLs were largely triggered by the electrochemi-
cal applications, most ionic models did not really account for
the electrode’s metallic nature. Assume the PC model of
classical electrostatics, with the metals as media of dielectric
constant �m=�. For a finite � solvent, there is a dielectric
discontinuity; the image effects substantially complicate
computations. To avoid these, many studies �92� treated an
idealized approximation: dielectric equivalence of the
charged wall and the solvent. Only then, with surface polar-
ization artificially suppressed, does the actual charge density
equal the preset value �. Dielectric discontinuity requires
local variation in � induced by the counterions’ electric field,
conveniently described by images. Thus, for the PC model of
metals the surface charge density is totally reflective of the
nonuniform charge distribution due to counterion images. It
shields the external fields keeping the surface equipotential
�93�, and fluctuates due to the thermal movement of the ions.
From this perspective, � control is equivalent to requiring
that the temporal average of the local ��r , t� is fixed and
uniform. In EDL simulations accounting for image effects,
pioneered by Torrie et al. �94�, this is usually achieved by
fixing the specific �per unit area� excess of the ionic charge
in the electrolyte. As outlined in Sec. VI later analysis dem-
onstrated that the images need not forbid Cd�0 at metal/
electrolyte interfaces �see �11,24,25,95� and references
therein�, consistent with Eq. �4� �34�. Accounting for image
effects or, even better, for the microscopic electronic proper-
ties of the electrode surface, is crucial to understanding �
control and its relation to the q and � types of control �see
Secs. II and VI B�.

2. Fixed charge ensemble, q control

q-control describes isolated systems with fixed total elec-
trode or particle charge. For a macroscopically stable homo-
geneous distribution � and q controls are equivalent. The
differences matter in describing instabilities and surface
phase transitions, where a laterally nonuniform �e.g., two-

phase mixture� state is preferred. Here only the q-control
description of the isolated system is proper. To analyze in-
stabilities at the metal/electrolyte interfaces consistent treat-
ment of electron redistribution is critical, regardless of how
surface polarization is treated. For a PC, spontaneous lateral
redistribution of � must be related to the redistribution of
charges in the electrolyte, reflecting the law of images, keep-
ing the electrode’s surface equipotential. As described in Sec.
VI B, this requirement, automatically accounted for in our
“squishy capacitor” toy model, may create additional diffi-
culties in modeling surface instabilities and phase transitions.

3. Fixed voltage ensemble, � control

Consider electrolyte sandwiched between two electrodes
connected to a potentiostat �battery�. Electrical control of the
cell is maintained via the electronic subsystem of the elec-
trodes. The real controlled variable is the difference between
the electrochemical potentials of the electrons in two cell
electrodes, �1 and �2, associated with their Fermi levels
�33,96�. Assuming identical electrodes �thus avoiding contact
phenomena complications�, the electrochemical potential dif-
ference equals the voltage

� =
�1 − �2

e
,

where e is the protonic charge. Equilibrium conditions estab-
lish q and its surface distribution �. Under � control the
potential difference is fixed and each electrode surface is
equipotential �93�. The thermodynamic potential is now �see
�56� and also �1,33� for details�

F̃�q,�� = F�q� − q� , �A1�

where F�q� corresponds to the canonical ensemble, FCE.
The contribution −q� couples the potentiostats and the elec-
trodes. Equilibrium is defined by �see also the discussion of
Eqs. �15�–�18��

�qF̃�q,���� = 0, �q
2F̃�q,���� � 0. �A2�

The first equation is equivalent to

�qF�q� = � �A3�

and defines the stationary charging states q=q��� corre-
sponding to a fixed �. The second yields

�q
2F�q��q=q��� = C−1 � 0. �A4�

Evidently, C−1�q��0 would indicate that a corresponding
stationary point q is maximal, and not physically accessible
under � control. This observation explains, for example, why
�� �Fig. 10, Sec. VI B� is the only state stable at the voltage
��, while another stationary point, �, is only accessible un-
der the artificial restrictions of � control.

“SQUISHY CAPACITOR” MODEL FOR ELECTRICAL… PHYSICAL REVIEW E 80, 011112 �2009�

011112-13



�1� M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117
�2008�.

�2� M. Gouy, J. Phys. Theor. Appl. 9, 457 �1910�.
�3� D. L. Chapman, Philos. Mag. 25, 475 �1913�.
�4� E. J. W. Verwey and J. T. D. Overbeek, Theory of the Stability

of Lyophobic Colloids �Dover Publications, New York, 1999�.
�5� H. T. Davis, Statistical Mechanics of Phases, interfaces, and

Thin Films �Willey-VCH, New York, 1996�.
�6� L. Blum, J. Phys. Chem. 81, 136 �1977�.
�7� D. Henderson, L. Blum, and W. R. Smith, Chem. Phys. Lett.

63, 381 �1979�.
�8� S. L. Carnie, D. Y. G. Chan, D. J. Mitchell, and B. W. Ninham,

J. Chem. Phys. 74, 1472 �1981�.
�9� G. M. Torrie and J. P. Valleau, J. Phys. Chem. 86, 3251

�1982�.
�10� L. Blum, J. L. Lebovitz, and D. Henderson, J. Chem. Phys. 72,

4249 �1980�.
�11� G. Torrie, J. Valleau, and C. W. Outhwaite, J. Chem. Phys. 81,

6296 �1984�.
�12� P. Nielaba, T. Alts, B. D’Aguanno, and F. Forstmann, Phys.

Rev. A 34, 1505 �1986�.
�13� G. M. Torrie, J. Chem. Phys. 96, 3772 �1992�.
�14� P. Attard, D. Wei, and G. N. Patey, J. Chem. Phys. 96, 3767

�1992�.
�15� D. Wei, G. Torrie, and G. Patey, J. Chem. Phys. 99, 3990

�1993�.
�16� Z. Tang, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 97,

494 �1992�.
�17� D. Boda, W. R. Fawcett, D. Henderson, and S. Sokolowski, J.

Chem. Phys. 116, 7170 �2002�.
�18� E. Gonzalez-Tovar, F. Jimenez-Angeles, R. Messina, and M.

Lozada-Cassou, J. Chem. Phys. 120, 9782 �2004�.
�19� D. Boda, D. Henderson, P. Plaschko, and W. R. Fawcett, Mol.

Simul. 30, 137 �2004�.
�20� L. B. Bhuiyan and C. W. Outhwaite, Phys. Chem. Chem. Phys.

6, 3467 �2004�.
�21� Y. X. Yu, J. Wu, and G. H. Gao, J. Chem. Phys. 120, 7223

�2004�.
�22� G. I. Guerrero-Garcia, E. Gonzalez-Tovar, M. Lozada-Cassou,

and E. Guevara-Rodriguez, J. Chem. Phys. 123, 034703
�2005�.

�23� P. Attard, in Chemical Physics of Solvation, edited by J.
Lutzenkirchen �Academic Press, New York, 2006�, Chap. 4,
pp. 88–111.

�24� M. Alawneh and D. Henderson, Mol. Simul. 33, 541 �2007�.
�25� L. B. Bhuiyan, C. W. Outhwaite, D. Henderson, and M.

Alawneh, Mol. Phys. 105, 1395 �2007�.
�26� The opposite opinion was also expressed �see �70� and refer-

ences therein�. This issue is addressed in Sec. V C.
�27� P. Delahay, Double Layer and Electrode Kinetics �Inter-

science, New York, 1965�.
�28� B. E. Conway, Electrochemical Supercapacitors: Scientific

Fundamentals and Technological Applications �Springer, New
York, 1999�.

�29� Improved treatments of the compact layer combine electrostat-
ics with a statistical treatment of the lattices of absorbed ions
and reorientable dipoles �97,30�. Microscopic effects due to
metal electrons are discussed below.

�30� J. M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Mod-
ern Electrochemistry: Fundamentals of Electrodics 2nd ed.

�Plenum Publishing Corporation, New York, 2000�.
�31� L. Blum and D. Henderson, J. Chem. Phys. 74, 1902

�1981�.
�32� V. J. Feldman and M. B. Partenskii, Electrochim. Acta 36,

1703 �1991�.
�33� M. B. Partenskii and P. C. Jordan, J. Chem. Phys. 99, 2992

�1993�.
�34� The inequality �Eq. �4�� is applicable both to primitive ionic

models �10� and to mixtures of ions with �nonpolarizable� mo-
lecular multipoles �the extension of the model considered in
�31�� �33,51�. From the arguments of �75�, it can be shown that
Eq. �4� also accounts for classical image effects.

�35� J. P. Badiali, M. Rosinberg, and J. Goodisman, J. Electroanal.
Chem. Interfacial Electrochem. 143, 73 �1983�.

�36� J. P. Badiali, M. Rosinberg, and J. Goodisman, J. Electroanal.
Chem. Interfacial Electrochem. 150, 25 �1983�.

�37� J. P. Badiali, M. Rosinberg, F. Vericat, and L. Blum, J. Elec-
troanal. Chem. Interfacial Electrochem. 158, 253 �1983�.

�38� W. Schmickler and D. Henderson, J. Chem. Phys. 80, 3381
�1984�.

�39� M. B. Partenskii and M. M. Vorobjev, Sov. Phys. Dokl. 29,
746 �1984�.

�40� V. J. Feldman, A. A. Kornyshev, and M. B. Partenskii, Solid
State Commun. 53, 157 �1985�.

�41� J. W. Halley, B. Johnson, D. Price, and M. Schwalm, Phys.
Rev. B 31, 7695 �1985�.

�42� V. J. Feldman, M. B. Partenskii, and M. M. Vorobjev, Prog.
Surf. Sci. 23, 1 �1986�.

�43� W. Schmickler and D. Henderson, Prog. Surf. Sci. 22, 323
�1986�.

�44� J. W. Halley and D. Price, Phys. Rev. B 35, 9095 �1987�.
�45� D. L. Price and J. W. Halley, Phys. Rev. B 38, 9357 �1988�.
�46� V. J. Feldman, M. B. Partenskii, and M. M. Vorobjev, Electro-

chim. Acta 31, 291 �1986�.
�47� V. J. Feldman, M. B. Partenskii, and A. A. Kornyshev, J. Elec-

troanal. Chem. Interfacial Electrochem. 237, 1 �1987�.
�48� Z. B. Kim, A. A. Kornyshev, and M. B. Partenskii, J. Electroa-

nal. Chem. Interfacial Electrochem. 265, 1 �1989�.
�49� J. W. Halley, Electrochim. Acta 41, 2229 �1996�.
�50� A major step in developing the microscopic theory of metal

electrons in contact with surface-inactive electrolytes was re-
alizing that the solvent layer shifts in response to charging, so
that both ze and zH are � dependent �see
�40–42,44,45,47–49,83,98�, and references therein�. Corre-
lated relaxation of ze and zH can significantly contract the gap
lH in the moderate anodic range ���0� resulting in a sharp
decrease in CH

−1���. This phenomenon, supported by experi-
ment, is completely reversed in theories with the solvent film’s
position frozen �see, e.g., �42,82� for review�. Relaxation of lH

also typically leads to CH����0, in the spirit of the RGC
model. In contacts of metals with solid electrolytes where sol-
vent is absent, outward displacement of ze in the cathodic
range readily accounts for the qualitative behavior and anoma-
lously high value of C for Au/AgCl and Au /Ag4RbI5 inter-
faces �39,42,46�. Both CH and C can naturally become nega-
tive at large cathodic charges causing instability �1,63�. In
general, predictions of very low and negative values of CH

−1

indicate that the inequality �Eq. �2�� can easily fail.
�51� M. B. Partenskii, V. L. Dorman, and P. C. Jordan, Int. Rev.

Phys. Chem. 15, 153 �1996�.

MICHAEL B. PARTENSKII AND PETER C. JORDAN PHYSICAL REVIEW E 80, 011112 �2009�

011112-14



�52� M. B. Partenskii and P. C. Jordan, Liquid Interfaces in Chemi-
cal, Biological, and Pharmaceutical Applications, Surfactant
Science Series Vol. 95, edited by A. G. Volkov �Marcel Dek-
ker, Inc., New York, 2001� Chap. 3, pp. 51–82.

�53� For example, the original GC model for a 1:1 electrolyte leads
to the effective gap contracting with charging as l� ln��� /�;
condition �8� is not satisfied. The contraction rate is too small
for the anomaly to arise. This is clearly true for other GC-type
models accounting for “steric effects,” which further reduce or
even reverse the compression rate �see �64–66� for reviews�.
In general, Cd is strictly non-negative in all “local statistical”
PB-type models �99�. A recent attempt to extend this analysis
beyond local models �76� was proven incorrect �1�.

�54� J. M. Crowley, Biophys. J. 13, 711 �1973�.
�55� The relation between the EC model and its prototype, the re-

laxing gap interfacial capacitor, is not literal. Thus, EDL elec-
trocompression does not require simultaneous physical shift of
the ionic positions toward the electrode resembling the relax-
ing plate of the EC. An efficient mechanism promoting con-
traction of the effective gap and, consequently, the appearance
Cd����0 in diffuse layers is “overscreening” condensation of
the induced charge density near the electrode at the expense of
some depletion in the tail regions of the ionic distribution. This
is closely related to ionic correlations �89� absent in PB-type
theories. Similarly, the “spring” is a metaphor for the entropic,
electrostatic, and molecular forces defining the equilibrium
charge distributions in an EDL �52�.

�56� L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-
ous Media �Pergamon Press, Oxford, 1984�.

�57� C. W. McCombie, in Problems in Thermodynamics and Statis-
tical Physics, edited by P. T. Landsberg �Pion, London, 1971�,
p. 459.

�58� w���, the energy of the isolated EC, does not include the vari-
able l. Instead, l is replaced by its equilibrium value, l���. The
simple interpretation is that � is a “slow variable” and that the
EC is always equilibrated at the current value of �. However,
one can use W�� , l� instead, and optimize over both variables
� and l. The result is unaltered, reflecting the uniqueness of the
equilibrium state �33�.

�59� The physical reason for the instability of the EC under � con-
trol is the steep ��2 / l2 increase in the attractive electrostatic
force at small separations l. Increasing � initially leads to a
continuous shift of the relaxing plate; it also flattens the local
minimum corresponding to its equilibrium position. Near the
critical voltage, �cr=u��cr�, the local minimum disappears
completely �the inflection point�. This leads to collapse when
the gap and the charge on the plates change discontinuously
�1,51��. A small change in the controlled parameter � leads to
a dramatic discontinuous change in the equilibrium state of
EC, similar to Zeeman’s “catastrophe machine” and the Euler
buckling instability �100�. Such behavior is interpretable in
terms of simple models with variable charges bound to their
equilibrium positions by linear restoring forces �52,101,102�.

�60� The special case 	i=1 follows directly from Eq. �26� in the
limit s→0.

�61� M. W. Hirsch and S. Smale, Differential Equations, Dynamical
Systems, and Linear Algebra �Academic Press, San Diego,
1974�.

�62� M. B. Partenskii and P. C. Jordan, Condens. Matter Phys. 8,
397 �2005�.

�63� M. B. Partenskii and P. C. Jordan, e-print arXiv:physics/
0412183.

�64� M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,
021502 �2007�.

�65� M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,
021503 �2007�.

�66� A. A. Kornyshev, J. Phys. Chem. B 111, 5545 �2007�.
�67� R. D. Armstrong, J. Electroanal. Chem. 372, 27 �1994�.
�68� T. Wandlowski and R. DeLevie, J. Electroanal. Chem. 388,

199 �1995�.
�69� R. De Levie, Chem. Rev. �Washington, D.C.� 88, 599 �1988�.
�70� P. Nikitas, J. Electroanal. Chem. 446, 165 �1998�.
�71� P. Nikitas, Electrochim. Acta 37, 81 �1992�.
�72� This can be justified by the fact that the nonuniform field due

to the periodic perturbation of the surface charge density with
the wave vector K decays as �exp�−qKz� where qK= ��2

+K2�1/2 and �=2� /�D is the Debye wave vector �103�.
Clearly, this can be neglected at interelectrode separations d
��D.

�73� It is worth noting that the so-called “molecular models” simu-
lated the compact layer as a two-dimensional lattice of “mo-
lecular dipoles” inserted between two conductors, the electrode
and the solvent, often treated in the PC approximation �with
�=��. In this approximation, a region of CH�0 under � con-
trol would signify phase transition in the compact layer. How-
ever, in the PC model, which effectively places all the coun-
tercharge in the Helmholtz plane, Cd vanishes, and the
compact layer is simply equivalent to the EDL.

�74� Here, we ignore more conventional reasons for the inconsis-
tency of two-layer EDL models, among them, specific ionic
absorption on the electrode, strongly dissimilar sizes of cations
and anions �which can be partially overcome by corresponding
modification of zH��� �85� or by considering a restricted �
range where one counterion species dominates �13��, penetra-
tion of the electron-density distribution beyond the limits of
the compact layer, etc. �66,104�.

�75� M. B. Partenskii and V. J. Feldman, J. Electroanal. Chem. In-
terfacial Electrochem. 273, 57 �1989�.

�76� H. Luo and M. Y. Yu, Phys. Scr. 74, 670 �2006�.
�77� Consider an EC. “Normally” C����0 and the equilibrium

state are unaffected when the isolated EC with fixed � and
corresponding equilibrium v��� is connected to a potential
source of equal voltage �=v���. In contrast, if C����0 the
same procedure leads to dramatic changes. Upon connecting to
a source of the same voltage, the equilibrium state �local mini-
mum� becomes unstable �local maximum�; there is immediate
charge transfer from the source to the plates with an associated
gap contraction �see also Appendix, Sec. 3�. Charging leads to
a new equilibrium state if a stable branch with C����0 exists
at larger �.

�78� M. B. Partenskii, V. L. Dorman, and P. C. Jordan, J. Chem.
Phys. 109, 10361 �1998�.

�79� M. B. Partenskii, G. N. Miloshevsky, and P. C. Jordan, Isr. J.
Chem. 47, 385 �2007�.

�80� Despite artificiality that can be introduced �e.g., unphysically
small cations and neglect of ionic polarizability in �13��, this
approach, rigorously and consistently applied, still addresses
the legitimacy and consequences of NC, in a spirit of exactly
solved statistical models �105�. Furthermore, in combination
with the suggested parametrization of CH���, the results of
tuning may well be physically adequate.

“SQUISHY CAPACITOR” MODEL FOR ELECTRICAL… PHYSICAL REVIEW E 80, 011112 �2009�

011112-15



�81� Essentially, this is similar to a parametrized � or � dependence
of the distance of closest ionic approach to the electrode �85�.
Originally designed to reflect typical differences in ionic size,
it can also be modified to account for the asymmetry of the
electron response.

�82� A. A. Kornyshev, Electrochim. Acta 34, 1829 �1989�.
�83� D. Price, J. Chem. Phys. 112, 2973 �2000�.
�84� K. Kiyohara and K. Asaka, J. Chem. Phys. 126, 214704

�2007�.
�85� M. V. Fedorov and A. A. Kornyshev, J. Phys. Chem. B 112,

11868 �2008�.
�86� A. Gurtovenko and I. Vattulainen, J. Am. Chem. Soc. 127,

17570 �2005�.
�87� J. Burton, in Statistical Mechanics, Part A: Equilibrium Tech-

niques, edited by B. Berne �Plenum Press, New York, 1977�,
pp. 195–234.

�88� R. D. Armstrong and B. R. Horrocks, J. Electroanal. Chem.
463, 9 �1999�.

�89� A. Y. Grosberg, T. T. Nguyen, and B. I. Shklovskii, Rev. Mod.
Phys. 74, 329 �2002�.

�90� H. Boroudjerdi, Y.-W. Kim, A. Naji, R.R. Netz, X. Schlag-
berger, and A. Serr, Phys. Rep. 416, 129 �2005�.

�91� Uniform charge distributions, planar spherical or cylindrical,
are often used in applications to electrochemical and colloid
interfaces. In the former, the surface charge density is defined
by the excess of electrons appropriate to free lateral redistribu-
tion and can be reasonably considered homogeneous under
“normal” �absent criticality, see below� conditions if the elec-
trode surface is smooth. Examples are a mercury electrode or a
monocrystalline surface. For colloids, the macroionic charge is
distributed over the irregularly sited ionizable surface groups;
a uniformly charged shell description is just a rough approxi-
mation. In some applications, where surface modulation of � is
of special importance �see �90� for review�, it can be modeled
as a fixed laterally inhomogeneous distribution ��r�. This is
still � control because the lateral distribution is imposed by the
“observer” �see also �85��. The alternative is allowing the sur-
face charge to equilibrate self-consistently with the electrolyte

charge distributions. We know of no such attempts in macro-
ionic �colloidal macroparticles� studies, where surface charge
redistribution, caused by instability, might laterally displace
the charged groups and deform the particles.

�92� A point made in the earliest discussions of NC �6–10,31� as
well as many more recent studies �see �13,16,18,22,85,106�,
and references therein�.

�93� In microscopic treatments of the electrode, the electrochemical
potential of the electron �the Fermi level� is fixed everywhere
on the electrode while its electrostatic and chemical compo-
nents can vary for various reasons including fluctuation in re-
sponse to ionic fields.

�94� G. M. Torrie, J. P. Valleau, and G. Patey, J. Chem. Phys. 76,
4615 �1982�.

�95� M. Alawneh, D. Henderson, C. W. Outhwaite, and L. B.
Bhuiyan, Mol. Simul. 34, 501 �2008�.

�96� E. A. Guggenheim, Thermodynamics: An Advanced Treatment
for Chemists and Physicists �North-Holland, Amsterdam,
1986�, p. 300.

�97� W. R. Fawcett, Isr. J. Chem. 18, 3 �1979�.
�98� D. Price and J. W. Halley, J. Chem. Phys. 102, 6603 �1995�.
�99� M. B. Partenskii, Z. B. Kim, and V. J. Feldman, Sov. Phys. J.

30, 907 �1987�.
�100� R. Gilmore, Catastrophe Theory for Scientists and Engineers

�Dover Publications, New York, 1993�.
�101� M. B. Partensky and P. D. Partensky, Phys. Teach. 42, 472

�2004�.
�102� M. B. Partensky and P. D. Partensky, Phys. Teach. 44, 88

�2006�.
�103� D. Andelman, in Handbook of Biological Physics, edited by

R. Lipowsky and E. Sackmann �Elsevier Science, Washigton,
DC, 1995�, Vol. 1, Chap. 12, pp. 603–642.

�104� W. Schmickler, Chem. Rev. 96, 3177 �1996�.
�105� R. J. Baxter, Exactly Solved Models in Statistical Mechanics,

3rd ed. �Academic Press, London, 1989�.
�106� E. B. Bhuiyan, C. W. Outhwaite, and D. Henderson, J. Chem.

Phys. 123, 034704 �2005�.

MICHAEL B. PARTENSKII AND PETER C. JORDAN PHYSICAL REVIEW E 80, 011112 �2009�

011112-16


